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Introduction

* A scintillator is a material that fluoresces when it is hit by 1onizing radiation such as
an accelerated charged particle.

* In order for scintillators to be useful they are usually coupled with a Photomultiplier
Tube (PMT) or a Silicon Photomultiplier (SiPM).

» Usually a PMT is placed close to a scintillator and the scintillations (emitted
photons) are guided into the PMT. The photons are then in essence, “converted” to
electrons where their signal is then greatly multiplied and eventually read out as an
electronic signal at the other end of the tube.
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Motivation for Radiation Hard Scintillator R&D

What are we looking for?
Compact

High light yield

High resolution

Radiation resistant

Fast

Cost effective Scintillators.
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Figure 2. Properties of scintillators to be considered when selecting materials.

Our goal is:

* To provide a Radiation Hard scintillator specifically for use in the
CMS experiment, however it is not limited to the CMS experiment.

* To provide a Radiation Hard scintillator for use in other fields such
as Medical and Nuclear Physics

* To research new and refine existing scintillator production
techniques.

Reference: E. Tiras, New Perspectives 2016




In Depth Example: Calorimeter Design Ref. E. Tiras NP Talk

Calorimeters; Reference: E. Tiras, New Perspectives 2016

* stop particles to measure the energy of them (charged and neutral
particles)
* are too large to absorb as much particle energy as possible
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Previous Research at the University of lowa
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Radiation Resistance is Key

* Because collision energy and luminosity (# of particles/sec.) are increasing, so too
is the total radiation level increasing.

* Enter Scintillator-X, a proprietary radiation hard scintillator currently in research
and development at the University of lowa High Energy Physics Group.
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It is clear that as
luminosity increases the
effectiveness of the
scintillators decreases.

Therefore 1t would be nice
to have a radiation

resistant scintillator for
CMS.



Scintillator-X Production Process Summary

1. Lab-Prep

2. Pre-Cure Stage
3. Curing Stage

4. Post-Cure Stage
5. Clean-Up

*It 1s vital that in addition to the electronic temperature cycle data taken, we also take
detailed notes along the way.

~8 Hours after post cure ~8 Hours after post cure ~2 Weeks after post cure
“white-light” “black-light” “black-light”




Characterization Tests at the University of lowa
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Experimental Set-Up at Fermilab & CERN Test Beams

Fermilab Test Beam Facility (FTBF)

e Primary beam, 120 GeV protons
e Secondary beam, 1-32 GeV, electrons,
positrons, pions, etc.

CERN H2 Test Beam Site

* Primary beam, 400 GeV protons
* Secondary beam, 10-360 GeV electrons,
hadrons and muons.




CERN 2017 H2 HCAL Test Beam Results
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Summary & Conclusion

* Scintillator-X appears to be a promising option thus far.
 We still have room to improve our production process.
* Rigorous analysis work is still in progress.

 There is still a lot of fine tuning to be done.

* Preliminary patent has been applied for.
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Examples of Technology That Utilizes Scintillators

Positron Emission Tomography (PET) utilizes
scintillators to aide in the treatment of various medical
ailments including cancer.

https://www.iibi.uiowa.edu/pet-center

The Compact Muon Solenoid (CMS) Experiment,
part of the Large Hadron Collider (LHC) at CERN.
While not every sub system utilizes scintillators, a
good deal of them such as HCAL do. For obvious
reasons a radiation resistant scintillator would be
quite handy for such applications.

https://home.cern/sites/home.web.cern.ch/files/image/experiment/2013/01/cms_0.jpeg




